Spectral Methods for Discontinuous Problems
نویسندگان
چکیده
Spectral methods have emerged as powerful computational techniques for simulation of complex, smooth physical phenomena. Among other applications they have contributed to our understanding of turbulence by successfully simulating incompressible turbulent flows, have been extensively used in meteorology and geophysics, and have been recently applied to time domain electromagnetics. Several issues arise when applying spectral methods to problems which feature sharp gradients and discontinuities. In the presence of such phenomena the accuracy of high order methods deteriorates. This is due to the well known Gibbs phenomenon that states that the pointwise convergence of global approximations of discontinuous functions is at most first order. In the presence of a shock wave global approximations are oscillatory and converge nonuniformly. Recent advances in the theory and application of spectral methods indicate that high order information is retained in stable spectral simulations of discontinuous phenomena and can be recovered by suitable postprocessing techniques.
منابع مشابه
Inverse Sturm-Liouville problems with transmission and spectral parameter boundary conditions
This paper deals with the boundary value problem involving the differential equation ell y:=-y''+qy=lambda y, subject to the eigenparameter dependent boundary conditions along with the following discontinuity conditions y(d+0)=a y(d-0), y'(d+0)=ay'(d-0)+b y(d-0). In this problem q(x), d, a , b are real, qin L^2(0,pi), din(0,pi) and lambda is a parameter independent of x. By defining a new...
متن کاملAccuracy of High Order and Spectral Methods for Hyperbolic Conservation Laws with Discontinuous Solutions
Higher order and spectral methods have been used with success for elliptic and parabolic initial and boundary value problems with smooth solutions. On the other hand, higher order methods have been applied to hyperbolic problems with less success, as higher order approximations of discontinuous solutions suffer from the Gibbs phenomenon. We extend past work and show that spectral methods yield ...
متن کاملInverse Problem for Interior Spectral Data of the Dirac Operator with Discontinuous Conditions
In this paper, we study the inverse problem for Dirac differential operators with discontinuity conditions in a compact interval. It is shown that the potential functions can be uniquely determined by the value of the potential on some interval and parts of two sets of eigenvalues. Also, it is shown that the potential function can be uniquely determined by a part of a set of values of eigenfun...
متن کاملInverse spectral problems for Sturm-Liouville operators with transmission conditions
Abstract: This paper deals with the boundary value problem involving the differential equation -y''+q(x)y=lambda y subject to the standard boundary conditions along with the following discontinuity conditions at a point y(a+0)=a1y(a-0), y'(a+0)=a2y'(a-0)+a3y(a-0). We develop the Hochestadt-Lieberman’s result for Sturm-Lio...
متن کاملPseudo-spectral Least-squares Method for Elliptic Interface Problems
This paper develops least-squares pseudo-spectral collocation methods for elliptic boundary value problems having interface conditions given by discontinuous coefficients and singular source term. From the discontinuities of coefficients and singular source term, we derive the interface conditions and then we impose such interface conditions to solution spaces. We define two types of discrete l...
متن کاملAlgebraic Multigrid Preconditioning of High-Order Spectral Elements for Elliptic Problems on a Simplicial Mesh
Algebraic multigrid is investigated as a solver for linear systems that arise from high-order spectral element discretizations. An algorithm is introduced that utilizes the efficiency of low-order finite elements to precondition the high-order method in a multilevel setting. In particular, the efficacy of this approach is highlighted on simplexes in two and three dimensions with nodal spectral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003